Jupyter Configuration
Configuration of the Jupyter feature is handled via the config file /etc/rstudio/jupyter.conf
. Note that this file is not automatically created by Workbench, and must be created before being configured, and the Jupyter feature is disabled by default. The following table lists the various configuration options that are available to be specified in the jupyter.conf
configuration file:
/etc/rstudio/jupyter.conf
Config Option | Description | Default Value | |
---|---|---|---|
labs-enabled | Enables launching of JupyterLab sessions. | 0 (disabled) | |
notebooks-enabled | Enables launching of Jupyter Notebook sessions. | 0 (disabled) | |
jupyter-exe | Path to the Jupyter executable. | “” | |
lab-command | The Jupyter command to run when starting a Lab session. | lab | |
lab-version | The version of Jupyter Lab being used. If set to auto , the version is automatically detected by running the Jupyter Lab version command on the Posit Workbench node. If Jupyter is being launched via the Launcher and is not installed on the Posit Workbench node, must set this to the version in use. Using different Jupyter versions for different sessions is not supported. |
auto | |
lab-args | Arguments to be passed to the Jupyter Lab command. Note that this does not override the default value - if you wish to use some of the default arguments, you must contain the default arguments in the configuration value. It is strongly recommended that you do not change this unless you know what you’re doing! | --no-browser --allow-root --ip=0.0.0.0 | |
notebook-command | The Jupyter command to run when starting a Notebook session. | notebook | |
notebook-version | The version of Jupyter Notebook being used. If set to auto , the version is automatically detected by running the Jupyter Notebook version command. If Jupyter is being launched via the Launcher and is not installed locally, you are strongly encouraged to set this to the version in use. Running against multiple different Jupyter versions simultaneously in different Launcher clusters is not supported - they must all be running the same version, or proxying issues will occur. |
auto | |
notebook-args | Arguments to be passed to the Jupyter Notebook command. Note that this does not override the default value - if you wish to use some of the default arguments, you must contain the default arguments in the configuration value. It is strongly recommended that you do not change this unless you know what you’re doing! | --no-browser --allow-root --ip=0.0.0.0 | |
session-clusters | List of available Job Launcher clusters for launching Jupyter sessions. Leave blank to specify all clusters. | ||
default-session-cluster | The default Job Launcher cluster to use when launching a Jupyter session. | ||
default-session-container-image | The default container image to use when launching a containerized Jupyter session. | ||
session-container-images | Comma-delimited list of images that may be used for running Jupyter sessions. | ||
jupyter-session-path | Path to the Jupyter Session launcher executable/script. It is recommended that you do not change this unless you know what you’re doing, and you need to point to a different script. | /usr/lib/rstudio-server/bin/jupyter-session-run | |
session-no-profile | Enables/disables running of bash profile scripts when starting Jupyter sessions. | 0 (run profile scripts) | |
session-cull-minutes | The amount of idle time to wait in minutes before a Jupyter session’s kernels and terminals are automatically “culled” (shut down). To disable culling, set the value to 0 . Enabling this sets the following Jupyter arguments: --MappingKernelManager.cull_interval=60 --MappingKernelManager.cull_idle_timeout=<60 * session-cull-minutes value> |
120, however, it is highly recommend that you set this 0 to disable culling. See note below. | |
session-shutdown-minutes | The amount of idle time to wait in minutes before a Jupyter session is shut down after its kernels and terminals have been culled. To disable automatic shutdown, set the value to 0 . Sets the following Jupyter arguments: --NotebookApp.shutdown_no_activity_timeout=<60 * session-shutdown-minutes value> --LapApp.shutdown_no_activity_timeout=<60 * session-shutdown-minutes value> |
5 | |
session-cull-connected | Whether or not to cull sessions that have a browser connected. Regardless of this setting, only idle (unused) sessions are culled. Sets the --MappingKernelManager.cull_connected Jupyter setting. |
1 (true) |
It is highly recommended that you disable session culling by setting session-cull-minutes=0
. When the server shuts down Jupyter sessions, users are not given a clear indicator that the session has ended. They may continue to work in the session, losing all changes made after the session shutdown.
Zombie sessions are processes that have finished their task, but the parent process has likely died/crashed. These sessions degrade the performance of the server. It is recommended that you configure culling for your sessions using the Configuration Options listed above.
For example, your jupyter.conf
file might look like the following:
# /etc/rstudio/jupyter.conf
jupyter-exe=/usr/bin/jupyter
labs-enabled=1
notebooks-enabled=1
session-cull-minutes=0
default-session-cluster=Kubernetes
default-session-container-image=rstudio:jupyter-session
Jupyter versions
Currently, Posit Workbench supports JupyterLab 2.x and 3.x, as well as Jupyter Notebooks 6.x. Due to differences between Jupyter versions, Posit Workbench needs to know the versions of Jupyter Notebook and Jupyter Lab that are in use. They can be automatically detected by Posit Workbench on start up by running the Jupyter command, or can be specified by using the lab-version
and notebook-version
settings in /etc/rstudio/jupyter.conf. Automatic version detection is done if the default value of auto
is used.
The use of Jupyter Notebook 7.x is not yet supported. The Posit Workbench Jupyter Notebook plugin (rsp-jupyter
) is not supported in Jupyter Notebook 7.x.
If you are running Jupyter in a remote cluster like Kubernetes, you will need to manually specify the version of Jupyter if it is not locally installed or is not running the same version as the remote cluster. Due to differences in routing, running against multiple different versions of Jupyter in different Launcher clusters simultaneously is not supported - the versions must match in all clusters.
You should specify a full Jupyter 3-part version number like so:
# /etc/rstudio/jupyter.conf
lab-version=3.0.6
notebook-version=6.2.0
Launcher Configuration
When creating containerized Jupyter sessions via the Job Launcher, you will need to specify mount points as appropriate to mount the users’ home drives and any other desired paths. In order for sessions to run properly within containers, it is required to mount the home directories into the containers.
For more information, see Launcher mounts. Note that you can specify the Workbench
with either JupyterLab
or Jupyter Notebook
to configure mount entries that should only be mounted for JupyterLab and Jupyter Notebook sessions, respectively.
If you are using NFSv3 for the shared storage for user home directories, you will need to set the local_lock=all
NFS setting in /etc/fstab in order for Jupyter sessions to work properly. Failure to do this will cause Jupyter sessions to hang. For this reason, we strongly recommend the use of NFSv4 for Jupyter sessions. See the NFS documentation for information on NFS settings.
Only a user’s home folder is visible within Jupyter sessions. To access other folders, create symbolic links to them within the home folder.
Container configuration
When running Jupyter sessions in containers, such as by using the Kubernetes Job Launcher plugin, you will need to ensure that the image(s) used to launch Jupyter sessions contain, at minimum, the following:
- Python 2.7 or Python 3.x
- JupyterLab and/or Jupyter Notebook installation
- Workbench session binaries
- If creating container users (see Server Configuration), you must have the
libuser1-dev
orlibuser-devel
packages, depending on your platform to install the libuser library and development tools.
For ease of use, it is recommended that you use the r-session-complete
Docker image as a base for any Jupyter session images you intend to create. This will allow you to use that one base image to provide Jupyter itself and a default version of Python, which you can extend if necessary to add/modify Jupyter versions or add additional versions of Python if desired. See Docker Hub for more information.
Varied installation locations
In some cases, the path to jupyter
might be different depending on where the JupyterLab or Jupyter Notebook session is running. The path to jupyter
might vary from container to container. By specifying a WORKBENCH_JUPYTER_PATH
environment variable in your container build, you can ensure that the desired Jupyter installation will be executed by workbench. The WORKBENCH_JUPYTER_PATH
can also be set in the launcher-env
file as described in the Launcher environment section. Workbench will resolve which jupyter
executable should by used with the following priority:
- The value of the
WORKBENCH_JUPYTER_PATH
environment variable, if set. - The value of
exe
as defined injupyter.conf
. - A
jupyter
installation that is on thePATH
.
If there is no jupyter
at any of those locations, JupyterLab and Jupyter Notebook sessions will fail to start.
Please note that jupyter
must still be installed at the location configured in jupyter.conf
on the Workbench host.
Installing the Jupyter Notebook plugin
Posit Workbench can further integrate with Jupyter Notebooks by utilizing the rsp-jupyter
Jupyter Notebook plugin. This plugin will automatically track and write recently opened notebooks to the Workbench homepage under the Recent Projects section, and also provides an easy way for users to leave their notebooks and return to the homepage.
If running Workbench in containers via the r-session-complete
Docker image, you do not need to install the Notebook plugin, as it comes with the container. Otherwise, to install and enable the plugin, run the following commands:
pip install rsp_jupyter
jupyter-nbextension install --sys-prefix --py rsp_jupyter
jupyter-nbextension enable --sys-prefix --py rsp_jupyter
If you need to uninstall the plugin for whatever reason, run the following command:
jupyter-nbextension uninstall --sys-prefix --py rsp_jupyter
To upgrade the plugin, you must first uninstall and then reinstall it.
Installing the JupyterLab Extension
Posit Workbench JupyterLab Sessions are intended to be run with the Posit Workbench JupyterLab extension installed. The extension provides JupyterLab sessions with a Posit Workbench home button and allows users to access remote web servers they are developing in their JupyterLab extensions through their browser.
The JupyterLab extension can be installed using pip
, but it must be installed within the same Python environment that Jupyter is installed in. Additionally, the extension must be installed on the node that hosts the users sessions (e.g. the docker image used by a pod in a Kubernetes cluster). To install the extension with pip
, an admin with write permissions to the Python directory can run the following command:
pip install workbench_jupyterlab
If a user launches a JupyterLab Session without the extension installed, Posit Workbench will attempt to install the extension while launching the session. In the most common scenario, the user will not have write access to the Python environment, and the extension will only be installed for that individual user. To perform this install, Posit Workbench must be able to access www.pypi.org. To provide the best user experience, it is recommended that an admin pre-installs the Posit Workbench JupyterLab extension before users run JupyterLab sessions.
To read more about the extension and check the latest available version number, visit https://pypi.org/project/workbench-jupyterlab/.
If the extension hasn’t been installed when the user launches a session, they can install it themselves using the same pip
command. However, the install will not fully complete until they launch their next JupyterLab session. When the extension is installed within an active JupyterLab session, only its front-end components are installed for that session, and server proxying will not work properly.
Adding Python environments to Jupyter
You can add new Python virtual environments or conda environments to Jupyter as Python Kernels that users can select, allowing them to have flexibility in the Python versions they can use.
The following steps show how to add a new Python virtualenv as a Kernel to Jupyter:
- Create the virtualenv or conda environment
- Add the environment as an iPython kernel
- Verify the kernel is available in Jupyter
# first, create the virtual env in a directory accessible by all users
cd /opt/python-kernels
# then make the virtualenv
virtualenv myenv
# alternatively, you can make a conda environment
# conda create -n myenv
# then, add the virtualenv to the Kernels list globally for all users
sudo ipython kernel install --name "myenv" --display-name "My Python Environment"
# finally, verify that the kernel is registered with Jupyter
sudo jupyter kernelspec list
Once the Kernel is listed in the output of the jupyter kernelspec list
command, it will be available for use in both JupyterLab and Jupyter Notebooks.
To remove the kernel, simply run the following command:
sudo jupyter kernelspec remove "myenv"
For more information, see the IPython docs.
Installing JupyterLab extensions
With the release of JupyterLab 3, it is now easier for system administrator to add extensions to Jupyter by using pip
. Simply pip install
the extension you want, and it will show up in JupyterLab sessions launched from Posit Workbench.
For example, to install the jupyterlab-kernelspy
extension using pip:
pip install jupyterlab-kernelspy
You will need to install the desired extensions on all Launcher nodes that are running JupyterLab sessions. For containerized sessions, the extension must be installed in the container image(s) that are used.
There is no need to explicitly enable or disable the extension. Once installed, active sessions can see the extension after refreshing the browser. Other extensions can be found on the Pypi.org site.
In previous versions of JupyterLab, you needed to install packages from source and build them with nodejs
. This flow is still supported, but installing prebuilt extensions via pip
is much simpler. For more information, see the JupyterLab extension docs.