Managing Jupyter Kernels in JupyterLab

Table of contents

Kernel management . . . . . . . ...
Viewing installed kernels . . . . . . . . . .. Lo
Manage running kernels . . . . . . ... Lo

User-Created kernels . . . . . . . . . ..
Creating kernels . . . . . . . . . L
Removing kernels . . . . . . . .. Lo

Ut O U QO = =

Kernels are processes that run independently and interact with JupyterLab. ipykernel provides
the IPython kernel for Jupyter, which provides an interactive Python development environ-
ment. Kernels in JupyterLab allow the use of different Python versions and virtual environ-
ments. By default, one or more kernels will exist when you log into JupyterLab running on
Posit Workbench.

1 Note

Server administrators can set up additional Jupyter kernels available to all users. Please
contact your administrator and refer them to these installation instructions.

Kernel management
Viewing installed kernels

Installed kernels can be seen on the Launcher page or from the terminal.

From the terminal, run the jupyter kernelspec list command to view the installed ker-
nels.


https://github.com/ipython/ipykernel
https://ipython.org/
../../../../server/jupyter_sessions/configuration.qmd#adding-python-environments-to-jupyter

: % File Edit View Run Kernel Git Tabs Settings Help

= t o ow 5 aneter B____________B

| Filter files by name Q
o = 8
./ |E| Notebook
0 Name - Last Modified
@ plotnine 3 minutes ago ﬁ P
Python 3 Python 3.10.4
(ipykernel)

Console

Python 3 Python 3.10.4
(ipykernel)

Other
v e A

Terminal Text File Markdown File Python File Show
Contextual Help

* X

)"

Simple (770 1 Mo & @

Launcher

Figure 1: Installed kernels from the Launcher



Manage running kernels

Fach time you open a notebook, a kernel runs in the background. When a notebook is
closed, the kernel continues to run, allowing for long-running computations. Use the Running
Terminals and Kernels tab to get an overview of tabs opened, kernels running, and terminals
running.

: ‘> File Edit View Run Kernel Git Tabs Settings Help
™ c [®] expl.ipynb X | [A exp2.ipynb X | [ exp3ipynb X  +
OPEN TABS Close Al B + X O » ®m C » Code v © st # Python 3 (ipykernel) O
@ [ expl.ipynb 5
. = + = §
" exp2.ipynb l Ll OB S |
‘} [ exp3.ipynb
KERNELS Shut Down Al
= [A explipynb
"] exp2.ipynb
% W] exp3.ipynb
TERMINALS Shut Down All
Simple 0 3 & © Python 3 (ipykernel) | Idle Mode: Command & Ln1,Col1 exp3.ipynb

From the Running Terminals and Kernels panel, open tabs, running kernels, and running
terminals can individually be closed/shut down by hovering to the right side of the tab for an
item and clicking the X that appears. Entire sections can be closed by clicking the Close All
or Shut Down All buttons.

Z E2 File Edit View Run Kernel Git Tabs Settings Help

C | A explipynb X | [ exp2.ipynb X | [ exp3.ipynb X | O Terminal 1 X |+
OPEN TABS Close All B + X TO [ » m C » Code v ® ¢ %  Python 3 (ipykemel) O
] expl.ipynb — &
[ exp2.ipynb I Ll AV E&EFE
A exp3.ipynb
B Terminal 1

¢ O =®

«— KERNELS Shut Down All
A expl.ipynb
[A exp2.ipynb

A exp3.ipynb

* X

TERMINALS Shut Down All

terminals/1
Simple 13 @ ® Python 3 (ipykernel) | Idle Mode: Command & Ln1,Col1 explipynb
Figure 2: Close/shut down single item
The Kernel menu bar button also offers a set of kernel management options. From here, you

can restart, shut down, and change kernels. You must have a notebook backed by a running
kernel open to use most of these commands.



>/3 File Edit View Run Kernel Git Tabs Settings Help

0.

» Clim explipynb X | [l exp2.ipynb X | [l exp3.ipynb X Terminal1 X  + a,
OPEN TABS Close All B+ X DO T » m C » Code v O it # Python 3 (ipykernel) O

o [® expl.ipynb l [ AL & PR -3
[A] exp2.ipynb : & F

o W] exp3.ipynb

Terminal 1

KERNELS Shut Down A

[®] explipynb

A exp2.ipynb
[A] exp3.ipynb

9§ TERMINALS Shut Down All

terminals/1

Simple 13 & @ Python 3 (ipykernel) | Idle Mode: Command @ Ln1,Col1 explipynb

Figure 3: Close/shut down multiple items in a section

55 File Edit View Run

0.

Git Tabs Settings Help

» Interrupt Kernel L1 p2.ipynb X | B exp3ipynb X [ Terminal1 X |+
OPEN TABS Restart Kernel... 0,0 ™ Code v @ @it # Python 3 (ipykernel) O
o [®] expl.ipynb Restart Kernel and Clear All Outputs... &
~ =
] exp2.ipynb Restart Kernel and Run up to Selected Cell... BrMYE&EFE
o W] exp3.ipynb Restart Kernel and Run All Cells...
Terminal 1 Restart Kernel and Debug
KERNELS Reconnect to Kernel
[ explipynb
: Shut Down Kernel
A exp2.ipynb
R Shut Down All Kernels...
[A] exp3.ipynb
Change Kernel...
4 TERMINALS
v
terminals/1
Simple 1M 3 & ® Python 3 (ipykernel) | Idle Mode: Command @ Ln1,Col1 explipynb

Figure 4: Kernel management menu bar section



User-Created kernels
Creating kernels

Virtual environments are an excellent way to create consistent, isolated, and reproducible
environments. To use virtual environments with notebooks in JupyterLab, the environment
must be registered first as a Jupyter kernel. To register a kernel run the following lines from
the terminal:

Create and activate a virtual environment:

python -m venv .venv
.venv/bin/activate

Install ipykernel in the virtual environment:
python -m pip install ipykernel
Register the virtual environment as a Jupyter kernel:

python -m ipykernel install --name {MACHINE_NAME} --display-name "{DISPLAY_NAME}" --user

o {MACHINE_NAME} is a placeholder for the machine project name. This name can
only contain ASCII letters and numbers and these separators: dash, underscore, and

period.
o {PROJECT-NAME} is a placeholder for the human-readable project name. This name
may contain spaces and is shown on the Launcher page.

For example, a valid command to register a kernel as Shiny Test:

python -m ipykernel install -—name shiny-test --display-name "Shiny Test" --user

Once registered, the kernel will be available on the Launcher page.

Removing kernels

Use the jupyter kernelspec list command from the terminal to view the currently installed
kernels. Use this list to find the correct kernel name. Then use the following command to
uninstall the kernel:

jupyter kernelspec uninstall {KERNEL_NAME}



: ?Jé,’ File Edit View Run Kernel Git Tabs Settings

Help

[Z Launcher

B : -

‘ Filter files by name Q
o 8 / shiny_test /
0 Name - Last Modified
Simple 1Mo B ¢

shiny_test

lE Notebook

Python 3
(ipykernel)

Console

Python 3
(ipykernel)

Other

Terminal

A

Python 3.10.4

A

Python 3.10.4

Text File

A

Shiny Test

A

Shiny Test

M
v

Markdown File

A

Python File

-
Show
Contextual Help
Launcher

Figure 5: User registered kernels available from the Launcher

o {KERNEL_NAME} is the kernel’s name in the jupyter kernelspec list command
and the --name argument in the ipykernel install command used to create the kernel.



	Kernel management
	Viewing installed kernels
	Manage running kernels

	User-Created kernels
	Creating kernels
	Removing kernels


